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The spectral decomposition theorem is proved for linear transport operators 
with separable scattering kernels and energy-dependent collision frequency in 
both one- and three-dimensional geometries. 
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1. INTRODUCTION 

In a previous paper (1) a first proof was given within a Hilbert space setting, 
for the spectral decomposition of a linear monoenergetic transport operator 
arising from time-dependent problems. The initial proof including both an 
infinite geometry and a slab geometry with periodic boundary conditions, 
was later extended for the same model (the Lorentz gas) considered in 
semi-infinite geometry with a specularly reflecting boundary. (2) In all these 
cases a Fourier analysis of the problem is relevant and one can replace the 
study of the original transport operator by the study of its Fourier compo- 
nents (or "reduced" transport operators). The essential features of the 
Lorentz model (such as the constancy of the collision frequency and the 
finite range of the velocity variable) combined with the Fourier decomposi- 
tion lead to an enormous simplification, allowing the proof of the spectral 
decomposition theorem. (1'2) The aim of this paper is to extend the method 
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applied in the previous work to the case of an energy-dependent collision 
frequency, a noncompact domain for the velocity variable and a two- 
dimensional structure for the spectrum of the transport operator. More 
precisely, we shall effectively construct, as before, the intertwining opera- 
tors which realize the similarity between the reduced transport operators 
and some normal operators, for which the spectral decomposition is given 
by the general theory. 

2. THE MODELS AND THE SETTING OF THE PROBLEM 

Let us consider the action of the linear transport operator 

(Af)(r, v) -- - vV,f(r, v) - ~(v)f(r, v) + flfRf(v)~(v')M(v)f(r, v') dv s (1) 

considered in a certain Hilbert space, where v = Iv[, M(v)= e -v2, the 
Maxwell flux, ~(v) is the collision frequency, and f1 -1=  f~(v)M(v)dv. In 
the following, ~(v) might be a rather general function with the property 
infv~(v) -- 4(0) --- ~* > 0. 

A model of the kind shown in Eq. (1) arises from studying shear flows 
with a velocity dependent Krook model (see Ref. 3 and references therein). 
The same model was also proposed by Corngold et a/. (4) in neutron 
tranport. In the particular case when ~(v) is a constant, we obtain the 
linearized BGK model for shear flows. (3) The scattering operator given in 
(1) is nonsymmetric in the Hilbert space L2(R 3 • R 3) but becomes sym- 
metric (even self-adjoint) if we introduce M(v) as a weight function, i.e., if 
we consider its action in L2(R3 • R3;M(v)drdv). Alternatively, we can 
symmetrize the scattering operator by changing the function f upon which 
it acts into g(v) = f(v)[M(v)]-1/2. We shall look for solutions independent 
of the polar angle of v and shall consider only functions of r, v,/~, where/~ 
is the cosine of the angle between v and the polar axis in the velocity space. 

Accordingly, we shall consider the symmetrized form of A acting on 
functions belonging to the Hilbert space % = L2(R 3 • •+ x [ -  l, 1]) 

(Af)(r,v, /~) = -vV, f ( r ,v , /~)  - ~(v)f(r,v, t~) + 2~rfl 

X s176176 f~l~(V)~(V')[ M(v)M(v')] 1/2lyt~'f(r, v', /.t')dr' d/z' 

(2) 
A Fourier transformation in the spatial coordinate r allows us to 

identify the transport operator A as the orthogonal integral 

a = f A k & (3) 

where each reduced transport operator A k acting in E ~ Lz(R + • [ -  1, 1]) is 
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given by 

A k = ikvlx - ~(v) + J 

( J f ) ( k , v ,  # )=--2~r f l fo~f l_(~ ' (MM') ' /2vv ' f (k ,v ' ,  I~')dv'dl~' (4) 

M -= M(v ) ,  M '  =--- M(v ' ) ,  ~ --- ~(v), ~' ~ ~(v') 

In order to prove that A is spectral in the sense of Dunford (5) we have 
to find a norm-bounded, strongly additive function E:  B ~ ~3 (%) defined 
on B (the Borel sets of the complex plane, C) with values in the bounded 
operators on %, ~ (%), such that E(A 1 A A2) = E(AOE(A2), 

E(A 1 U A2) = E(AI) + E(A2) -- E(A, 0 h2), E(C) = I%, VA,,A 2 e B 

and such that the operator A can be diagonalized: 

A = f cXE  (dh) (5) 

In view of the orthogonat decomposition (3), this has to be proved for every 
operator A~, which for k v s 0 are unbounded non-normal operators on L. 
[A 0 is a self-adjoint operator, bounded or unbounded, depending on the 
range of ~(v).] A~ can be viewed as the perturbation of the normal operator 
i k v -  ((v) by the self-adjoint operator of rank 1, J. Such problems have 
been extensively studied in the literature in a quite general framework. See, 
for instance, Friedrichs, (6) and for further developments Kato, (7) Dunford 
and Schwartz, (5) and references therein. 

At least two approaches are available. The first one is to try a 
generalized eigenfunction expansion for Ak, for which the natural frame- 
work consists of rigged Hilbert spaces (Gel'fand triplets). (8) The second 
approach, invented by Friedrichs (0 consists of applying a scattering for- 
malism, i.e., of constructing (nonunitary) bounded wave operators which 
realize the intertwining (similarity) of the perturbed operator AI, with a 
normal operator Ak for which the spectral measure is simply available. 
Apart from its elegance, the formal advantage of this method is that only 
Hilbert space operators are involved. The equivalence of the two methods is 
easily established and can be inferred from the fact that the formal kernels 
of the wave operators realizing the intertwining are nothing but the general- 
ized eigenfunctions of the perturbed operator. 

In principle, the cases at hand are essentially covered by Friedrichs' 
result except that some new details are added in order to handle the more 
complicated case of a non-normal operator with a two-dimensional spec- 
trum. However, in view of the interest presented by the method for linear 
transport theory, we shall present some details of Friedrichs' argument. 
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For convenience, instead of A k w e  shall study the operator 

2~B 
Bk = vl~ + ~ + T ]o~176 ' dv' d~' (6) 

F F1 

obtained from A k by dividing it with ik (k  ~ 0). 
Therefore, we try to find a normal operator /~k acting in a Hilbert 

space ~ (to be determined too) and two bounded operators ~2~ : ~  E, 
f~- : E ---> E with the following properties: 

~'~k ~-~k = Ie ("completeness") (7) ( a )  + - 

f~k f~k = I~ ("orthogonality") (8) ( b )  - + 

(c) Bk~- ~ = ~2 k B k , ~ ;  B k (9) 

Indeed, if this is done, then the spectral measure of A k (k 4: 0) will be 
written as 

Ek(" ) = ikfY~ ff~k(" ) ~ k  (10) 

where Ek(') is the (known) spectral measure of the normal operator/~k" 
The spectrum of B k is (for the proof see, for instance, Corngold (9)) the 

(1) essential spectrum at the left of the curve E described parametrically by 

R e z  = + v,  

v E a +  ( 1 1 )  
Imz 

(2) the discrete spectrum given by the dispersion equation 

2~rfl oo 1 ~2Mv2dvd~ 

These eigenvalues are purely imaginary and nondegenerate. For k > 0, 
X k ~ (O,X*/ik),  and for k < 0, X k ~ (O,i(X*/k)).  

The corresponding normalized eigenvector is 

~M1/2v 
fk = Ck ?~k -- V -- ~ i / k  (13) 

where Ck is given by the condition 

fo~ f : dv dlz= l 

There exists a critical value k*, 0 < k* < ~ ,  such that for Ik[ > k* no 
discrete eigenvalues occur. 

We shall distinguish therefore two cases: 
(i) lk] > k*, when B k has no discrete eigenvalues; and 
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(ii) Ikl < k*, when B k has the nondegenerated eigenvalue ?t k given 
by (12). 

In case (i) we take ~ -= E and/~k -= B o 

(B~ #) = vn(v, #) + (~/ik)n(v, Ix) (14) 

Conditions (a), (b), and (c) take the form 

(a') U~'U~- = I e (7') 

(b') U~-U 2 = I e (8') 

(c') Bk V;  ~ = U;~B o, U;-Bk = B ~ (93 
In case (ii), ~ will be the orthogonal sum ~ - - ~  @ C (with vectors 

/~ 8~ wi o �9 " written as (f), f E s ~/E C) and k = (0 ~) th B defined m (14). In this 
matrix notation the action of the wave operators ~2~', ~2~- is given by 

f ~ - ( f ) = (  U~fk ) ( { ) =  U~-f+~lfi, V f E  ~, ~ E C  

0 5 ) 

a~-f= (fk,  ") f =  - ' V f e E  [ ( f i , / ) J  

and conditions (a), (b), and (c) read now as 

(a") U~-Uk- = I e -- fk(]'k, ") (7") 

(b") Vff- V 2 = 1~ (8") 

(c") B~U[  = U [  B ~ V;  Bk = B~ - (9") 
As (c') and (c") look identical, we shall use them for determining U k 
simultaneously for both cases. We shall then verify (a'), (b') and (a"), (b") 
for cases (i) and (ii), respectively. 

. 

where a -=- 27rfl/ik, 

CONSTRUCTION OF THE WAVE OPERATORS 

Writing B~ = B~ (I/ik)J, we translate conditions (c'), (c") into 

+ =-  - . . R Z  

v =--~M1/2v and Rk + and R 2  will be shown to be 
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degenerate integral operators of rank 1, namely, 

/ ' o0  t " l  + 
( R y n ) ( v ,  /Q =.Jo J-1 rk (v', I~')n(v ', ~t')dv' dt~' (16) 

t o o  r l  
( g k n ) ( v ,  I~) = r[  (v, I~)J ~ ~ _ l n ( v ,  I#)dv'dt~' (17) 

Supposing that rk -+ are known, we have to find a bounded operator Z 
satisfying the operational equation: 

[ B ~  (18) 
which actually has an infinity of solutions. We shall show that Eq. (18) has 
a bounded solution whenever R has a separable kernel of the form 
rl(v, IOr2(v', t~'), rl, 2 E L ~ ( R  + •  1]), by effectively constructing one 
solution Z = F(R) depending homogeneously on R. 

F(R) = Pl. (l)/.t 4- i ~ / k  - v ' t~ ' -  i ~ ' / k ) ,  r2 = -- Pl(Z -- 2 ' )  -1"  r~ (19) 

where Pl, r 2 are the multiplicative operators by rl(v, /0,r2(v' , /~') ,  respec- 
tively, and 

Therefore we shall write 

z =-- Vl x + i ~ / k  (20) 

U~ = I e + r(R[ ) (21) 

u~- = I e + I'(Rk- ) (22) 

where we require that in the limit of null perturbation (J = 0) the equiva- 
lence be realized by the identity operator I e, and where R~ are to be 
determined from the consistency relations 

R ;  = J[ + r ( R ;  ) ] 

i [ i  e + F (Rk- ) ] j  R [  = 

In terms of formal kernels, Eq. (21) reads 

u ; ( v ,  I~,v', tE) = l ~ 8 ( v  - v')8(IX - Iz') z a % ,  r~-(v, iz, v', I~') (23) 
2erv 2 

where 

r ;  (v, t~, v', t~') = f o o  (T v" u ;  (v",  tt", v', I~') dv" dbt" 
.1o j _  1 (24) 

. " -  . (v")  

By multiplying with and integrating over dv dt~ we obtain from (22) the 
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expression for r~-(v, li, v', li') (which actually does not depend on v, li): 

pt 
C ( v ,  ~ , v  t, li') - z - z '  (1 + ~ , ) - ,  (25) 

oz 1 v2dvdli  (26) 
~,'-=r(z')=s s z--z = 

This leads finally to 

t av___v_' (1 + aT ' ) - '  (27) u~+(v, l i , ~ ,  li') = - ! - - 1  ~ (v  - v ' )8 ( l i  - li') z - z, 2~rv 2 

Similarly, from Eq. (22) one gets 

U k  (I) , li, Vt, l i t)  = 1 . . _~ (  0 __ V t ) ~ ( l i  --  li t) "1- aPP----~t (1 --1- a ] t )  - 1  ( 2 8 )  
2r  2 z - -  z '  k 

One should emphasize that the meaning of these expressions is that of 
formal kernels of nonintegral operators acting in s For instance (1/2rrv 2) 
3 ( v -  v ' ) 3 ( l i -  li') has to be seen as the formal kernel of the identity 
operator I e and not as a distribution (as the functions considered here are 
vectors in L 2 and their value in a point is not always meaningful). 

Now, by using the expression (27) and (28), one has to verify the 
relations (a'), (b'), (a"), (bt'). Actually (b') and (b") are the same; to prove 
them one has to show that 

U F Uk + = I e + F(R k- )F(Rk + ) + F(R k- ) + F(Rk + ) = I e 

i.e., to show that F(RZ)I '(R~ +) + F(Rk- ) + F(Rk +) = 0. Indeed, by comput- 
ing the kernel of I'(Rk-)F(Rk+), one has 

_ _  v "  v '  dv" dlit' ( ~  ( 1 0 l  2 pptt (1 + o / ~ ) - l ( 1  -it" o('yt) - 1  z t T ~ - z ,  
Jo J-1  z " - z  

= o~2vv'(1 + ay) - l (1  + a y ' ) - '  

fo~ f ,_ v"2 ( 1 l ) av" ali" X - - -  Z " - -  Z ~ 
l Z - -  g ~ g t t  - -  Z 

_ _av._v_' (1 + a7)-1(1 + aT')- l(1 - aV t - 1 + a3') 
Z - -  Z t 

vv' (1 + aV)- '  (29) _ _av__v" (1 + a r ' ) - l -  a - z' 
Z - -  Z'  Z 

which is precisely the kernel of the operator - F ( R ~  +) - F(RS) .  
We shall now compute U~-Uk- in the case (a"), when a discrete 

eigenvalue is present. The case (a') is, of course, simpler. The formal kernel 
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of F(Rk+)F(Rk - )  + F ( R k )  + F(Rk +) is 

f o , . ( 1  ~2 ,,,," p,,,,, 
. , - i  z -  :" (l + 0/~'")-~: ' - -~ " ( 1+  '~' ' )  

-0 /  ""---L--' (l + ,~ , ) -~ -  0/ "--A--' (1 + ,~./,)-' 
Z I - -  Z Z --  Z ~ 

=0/2 pp_.____.~ fOOa f l - pt,2 0/y,,)_2dv. dlz,, 
z ' -  z I z Z z "  (1 + 

pu2 
+ 0 /  pp'  . (oo  ( 1  z t T - z  " (1 + 0/T")-2dv"dlz " 

z - z ' J o  3-1 

vv' . .  vv' (1 + 0/'/ ')- '  (30) 
- 0/z-;2z_ z (l + a~,) - l -  a z - z '  

The technical problem is now to estimate the integral terms in (30). To 
further this aim we shall use some results of the theory of generalized 
analytic functions (l~ (see Appendix). Thus, one rewrites (30) in the form 

"< ( 'So;  ',, -'I ~ OL Zr Z 

+ 1 f f~rd(z - z")(1 + 0/T")-lax"dy " -  (I + a T ) - ' ]  
../GJ ] 

( -  0---- 7 _ _ ( l + a T , , ) - l l d x , , d y "  +0/z ~___L_'_ z, ~ l f j  0e, [z, l z "  

+ • ( (~8(z ' -  z")(1 + 0/r")-'dx" dy" - (1 + 0/~') '/ 
J G J  j 

- '  ' S o S ' f (  ' ' i I = 0 /  - - - -  z "  z '  z "  ( 1 + 0 / ~ " ) - ~  dx"dy"  z' -- z ~ O,U' z -- -- 
(31) 

where p is defined by Eq, (A5) of the Appendix, G is the two-dimensional 
region covered by the essential spectrum, and where the relation (A3) was 
used. 
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The surface integral can be transformed into a line integral by using 
the Green formulas (m) 

l f G f  ( ~_~fx+. Of i f f d x  

- -  1 i f fdx + �89 f fdy= 1 fef(z)dz 

and then we obtain from (31) 

(32) 

vv' s 1 1 dz" 
a~-~ ( l + a T " ) z - z "  z ' - z "  

1 1 1 0 7 ] - 1 1 1  
= - a v v ' ~  " 2~ri -~z z=~o z -  z o z ' -  z o 

= - v v ' (  ~Y ) -1 1 �9 1 (33) 
-~Z Z=Zo Z - -  Z 0 Z t -  Z 0 

which is nothing but the negative of the kernel of-the projector Pk 
= fk (fk, ' )  on the eigenveetor fk corresponding to the eigenvalue ~k -= z0 of 
B k. The minus comes from the fact that the sense of integration on G must 
be counterclockwise for the continuous spectrum, and therefore it is clock- 
wise for the region containing the pole. 

In deducing (33) we took into account that the contribution of the 
half-circle at infinity in the upper-half-plane is obviously null. 

This ends the proof for the existence of the wave operators with 
desired properties for ]k[ r k*. If k = k* (eigenvalue "'in statu nascendi" at 
the edge )t* of the essential spectrum) no such bounded operators can be 
found. This situation is always encountered in the infinite or semi-infinite 
medium case (k E •), but only for exceptional values of the slab widths in 
the periodic case [k ~ 77; see Ref. 1]. 

We have then the main result: 

Theorem. For every ~ > 0 and every Borel set A E C at nonzero 
distance from -X*, the subspace 

%a,a= f~ ff.kdk~ f~ Ek(A)Ekdk (34) 
Ik-+k*l>8 Ik-+/*l<~ 

is invariant under the operator A [E~ is given by (10)] and A restricted to 
%a,a is similar to a normal operator. 
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4. REMARKS AND CONCLUSIONS 

1. For slab and parallelepipedal geometries with periodic or specu- 
lady reflecting boundary conditions the theorem can be strengthened in the 
sense that with the exception of a denumerabte set of critical dimensions of 
the bodies, the operator A is similar to a normal operator. For those critical 
values, when it so happens that X* is also a discrete eigenvalue, we can 
obtain only a weaker result, similar to (34) (see Ref. 1). 

2. The proof is valid also for other models, for instance one- and 
three-dimensional energy-dependent models with constant collision fre- 
quency (the spectrum of B k is then reduced to a line parallel to the real axis 
plus, possibly, a discrete eigenvalue), or one-dimensional energy-dependent 
models with energy-dependent collision frequency (the spectrum of B k is 
then only the curve C given by (11) and, possibly, a discrete eigenvalue). As 
mentioned in the Introduction, these models are related to the BGK model. 
Their essential feature is that the continuous spectrum of B k does not cover 
an area in the complex plane, but is reduced to a one-dimensional cmwe. 
Then, the singularity introduced by the factor 1 / ( z ,  z') in (19) is stronger 
than in the case considered here and it must be treated by means of the 
approximate kernels G, = ( z ' - z  + i~)-1 exactly as in Ref. I. Moreover, 
the verification of the relations (a'), (a") does not appeal to the theory of 
generalized analytic functions, as from the beginning we are dealing with 
true analytic functions of the appropriate variable z and the  involved 
integrals are already line integrals. 

3. The connection of the wave operators with the generalized eigen- 
functions of A and the properties of "completeness" and "orthogonality" 
can be discussed exactly as in Ref. 1. 

4. The proof given here is constructive and takes advantage of some 
particular aspects of the models and of the setting~ especially of the facts 
that the perturbation J is self-adjoint and of rank 1 and the Fourier 
transformation diagonalizes the operator A. 

5. The further generalizations of the result should deal with perturba- 
tions and boundary conditions for which only an existence theorem of the 
wave operators is implied. 
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A P P E N D I X  

In the main part of this paper we have used the notation and some 
results of the theory of generalized analytic functions. (10) The main tool is 
the following result, also known as Poincar6's lemma. If h is an integrable 
function of x and y in a closed region G of the plane and if we denote 
x + iy by z, then 

s  h(z) f (z ' )  = - l~r ~ dx dy 

is differentiable a.e. and 

0f _ h(z,) 
OF' 

This means that, in the sense of distributions, 

a 1 - ~ ( x  - x ' ) 8 ( y  - y ' )  = - ~ ( z  - z ' )  
OF' z - z '  

A formal proof of this result is very easy (see, e.g., Ref. 3). 
Equation (26)-of the main text can be rewritten as follows: 

where 

.2(z) dxdy 
f f 

(A1) 

(A2) 

(A3) 

(A4) 

~(x, y) 
p(z) - a(v, ~) (AS) 

is the Jacobian of (x, y) with respect to (v, /0.  
Accordingly, 

- ~ r p Z ( z ' ) / p ( z  ') (A6) ~ '  

This result can be used to express p,2 in Eq. (30) in order to obtain Eq. (31). 
In addition Eq. (A3) is used in Eq. (31). Equation (32) is nothing but the 
complex version of the Green formulas. O~ 

We remark that the results presented in this Appendix are also valid if 
the domain G is unbounded as required in the main text, although this case 
does not seem to have been considered in  the literature. To prove it, it 
suffices to assume that h ( z ) / ( z  - z ' )  is integrable for any z' in G. [This is 
certainly the case of v2/0 provided ~(v) exists almost everywhere, is 
bounded for finite v's, and does not grow too fast for v-+ oo]. Then for any 
fixed z' we can split G into G', bounded and containing z' and its 
complement in G, G " .  The integration of h ( z ) / ( z  - z ' )  over G "  yields a 
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ho lomorph ic  funct ion  of z ' ,  hav ing  zero der ivat ive  with respect  to ~'; then 
the usual  l e m m a  can  be  app l i ed  to G' ,  in o rder  to get Eq. (A2). 
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